GCPC 2018

Presentation of solutions

$\mathbf{a c m}$

Statistics

Statistics

I - It's Time for a Montage

I - It's Time for a Montage

Problem

Given two integer sequences H and V of equal length, find the minimal non-negative d to add to the values in H such that lexicographically, $H+d \geq V$.

I - It's Time for a Montage

Problem

Given two integer sequences H and V of equal length, find the minimal non-negative d to add to the values in H such that lexicographically, $H+d \geq V$.

Solution

- If $H_{1}>V_{1}$, the answer is 0 .
- Otherwise, put $d:=V_{1}-H_{1}$.
- If $H+d<V$, the answer is $d+1$, else it is d.

C - Coolest Ski Route

C - Coolest Ski Route

Problem

Given a graph of ski slopes labelled with condition measures, find a path with maximal sum of these measures.

C - Coolest Ski Route

Problem

Given a graph of ski slopes labelled with condition measures, find a path with maximal sum of these measures.

Solution

- The graph of ski slopes is a directed acyclic graph.
- Find the longest path between any two nodes.
- Multiple graph algorithms can be used for this:
- Invert the measures, use Floyd-Warshall $\left(\mathcal{O}\left(n^{3}\right)\right)$.
- Add a super source, invert the measures, then use Bellman-Ford for shortest paths $(\mathcal{O}(n * m))$.
- Find a topological ordering, then find the maximum for each node with dynamic programming $(\mathcal{O}(n+m))$.

F - Fighting Monsters

F - Fighting Monsters

Problem

Given a list of numbers, are there two numbers such that alternating subtraction of the two values results in a pair $(0,1)$?

F - Fighting Monsters

Problem

Given a list of numbers, are there two numbers such that alternating subtraction of the two values results in a pair $(0,1)$?

Observation

We calculate backwards from the final state:
$(0,1)$

F - Fighting Monsters

Problem

Given a list of numbers, are there two numbers such that alternating subtraction of the two values results in a pair $(0,1)$?

Observation

We calculate backwards from the final state:

$$
(0,1) \leftarrow(1,1)
$$

F - Fighting Monsters

Problem

Given a list of numbers, are there two numbers such that alternating subtraction of the two values results in a pair $(0,1)$?

Observation

We calculate backwards from the final state:

$$
(0,1) \leftarrow(1,1) \leftarrow(1,2)
$$

F - Fighting Monsters

Problem

Given a list of numbers, are there two numbers such that alternating subtraction of the two values results in a pair $(0,1)$?

Observation

We calculate backwards from the final state:

$$
(0,1) \leftarrow(1,1) \leftarrow(1,2) \leftarrow(3,2)
$$

F - Fighting Monsters

Problem

Given a list of numbers, are there two numbers such that alternating subtraction of the two values results in a pair $(0,1)$?

Observation

We calculate backwards from the final state:

$$
(0,1) \leftarrow(1,1) \leftarrow(1,2) \leftarrow(3,2) \leftarrow(3,5)
$$

F - Fighting Monsters

Problem

Given a list of numbers, are there two numbers such that alternating subtraction of the two values results in a pair $(0,1)$?

Observation

We calculate backwards from the final state:

$$
(0,1) \leftarrow(1,1) \leftarrow(1,2) \leftarrow(3,2) \leftarrow(3,5) \leftarrow(8,5) \ldots
$$

These are Fibonacci numbers!

F - Fighting Monsters

Problem

Given a list of numbers, are there two numbers such that alternating subtraction of the two values results in a pair $(0,1)$?

Observation

We calculate backwards from the final state:

$$
(0,1) \leftarrow(1,1) \leftarrow(1,2) \leftarrow(3,2) \leftarrow(3,5) \leftarrow(8,5) \ldots
$$

These are Fibonacci numbers!
Solution

- Generate Fibonacci numbers up to 10^{6}.
- Check if two consecutive Fibonacci numbers appear in the list.
- Be careful about monsters with power 1 .

D - Down the Pyramid

D - Down the Pyramid

Problem

Given a non-negative integer sequence A, find the number of possible non-negative integer sequences B such that $A_{i}=B_{i}+B_{i+1}$ for all pairs of adjacent numbers in B.

D - Down the Pyramid

Problem

Given a non-negative integer sequence A, find the number of possible non-negative integer sequences B such that $A_{i}=B_{i}+B_{i+1}$ for all pairs of adjacent numbers in B.

Insights

- B_{1} uniquely determines the rest of the sequence.
- If B_{1} increases, each odd-numbered element increases and each even-numbered element decreases.

D - Down the Pyramid

Problem

Given a non-negative integer sequence A, find the number of possible non-negative integer sequences B such that $A_{i}=B_{i}+B_{i+1}$ for all pairs of adjacent numbers in B.

Insights

- B_{1} uniquely determines the rest of the sequence.
- If B_{1} increases, each odd-numbered element increases and each even-numbered element decreases.

Solution

- Put $B_{1}:=0$ and compute the resulting sequence.
- Find the minimum odd- and even-numbered elements.
- The range of answers is $\left[-\min \left\{B_{2 i+1}\right\}, \min \left\{B_{2 i}\right\}\right]$.
- Time complexity: $\mathcal{O}(n)$.

L - Logic Puzzle

L - Logic Puzzle

Problem

Given a rectangular grid of numbers, color some of the cells in black such that the number in each cell equals the number of adjacent black cells. Cells on the boundary may not be colored.

1	1	2	1	1
1	2	3	2	1
1	2	3	2	1
0	1	1	1	0

1	1	2	1	1
1	2	3	2	1
1	2	3	2	1
0	1	1	1	0

L - Logic Puzzle

Problem

Given a rectangular grid of numbers, color some of the cells in black such that the number in each cell equals the number of adjacent black cells. Cells on the boundary may not be colored.

Solution

- The solution can be reconstructed row by row.
- For every cell, check if the number to the top left is positive.
- If it is, put an X and subtract 1 from every adjacent cell.
- Do a second pass to check if any non-zero numbers remain.
- If there are no conflicts, output the solution.

E - Expired License

E - Expired License

Problem

Given two floating point numbers representing the aspect ratio $a \times b$ of a photo, find prime numbers p and q such that $\frac{a}{b}=\frac{p}{q}$.

E - Expired License

Problem

Given two floating point numbers representing the aspect ratio $a \times b$ of a photo, find prime numbers p and q such that $\frac{a}{b}=\frac{p}{q}$.

Solution

- Multiply a and b by 10^{5} to make both numbers integral.
- Divide both numbers by their greatest common divisor.
- Check whether the resulting two numbers are prime, e.g. using the Sieve of Eratosthenes.
- Special case: quadratic aspect ratios, i.e. 6×6.
- Take care of numerical issues when using floating point arithmetics, e.g. $0.00007 \cdot 10^{5}=6.9999999999999991118 \ldots$

H - Hyper Illuminati

H - Hyper Illuminati

Problem

Build an n-dimensional step-pyramid consisting of m blocks.

H - Hyper Illuminati

Problem

Build an n-dimensional step-pyramid consisting of m blocks.

Observation

- We need to find a dimension n and a step number s such that

$$
\sum_{k=1}^{s} k^{n-1}=m
$$

- The k^{n-1} grow very fast, especially for higher dimensions.

H - Hyper Illuminati

Solution

Calculate all candidate pyramids keeping the following in mind:

- We can stop increasing s as soon as $s^{n-1}>m$.
- We can stop increasing n as soon as $2^{n-1}>m$.

In total, there are only 328373 pyramids with two or more steps and at most 10^{16} blocks.
Possible pitfall: avoid the pow() function in $\mathrm{C}++$ and Java.

B - Battle Royale

B - Battle Royale

Problem

Given a red circle, a blue circle and two points, find the length of the shortest path between the two points while staying inside the blue circle and outside the red circle.

Simplifications:

- Touching the circles is allowed.
- The direct path is always blocked by the red circle.
- The red circle and the two points are completely inside the blue circle.

B - Battle Royale

Problem

Deductions

- The blue circle is irrelevant.
- No need two check if the direct connection is possible.

B - Battle Royale

Problem

Solution

- Compute tangents of the red circle going through start and end.
- Compute the length of circle segments between the touching points $L_{1,2}, R_{1,2}$.
- Find the minimum length of the four paths start $\rightarrow L_{1,2} \rightarrow R_{1,2} \rightarrow$ end.

A - Attack on Alpha-Zet

A - Attack on Alpha-Zet

Problem

Given a sequence of locations inside a maze, what is the minimal distance one has to travel to visit them all in given order?

A - Attack on Alpha-Zet

Problem

Given a sequence of locations inside a maze, what is the minimal distance one has to travel to visit them all in given order?

Observation

- The number of locations is too big for multiple iterations of any search algorithm.
- Since the maze has no loops, it can be seen as a tree.

A - Attack on Alpha-Zet

Solution

- Transform the maze into a tree e.g. with depth first search.
- Find Lowest Common Ancestors to calculate the distance between two consecutive locations.
- \Rightarrow Init: $\mathcal{O}(n \log n)$, Lookup: $\mathcal{O}(1)$

K - Kitchen Cable Chaos

K - Kitchen Cable Chaos

Problem

Given n cables with lengths d_{1}, \ldots, d_{n}, find the set of cables that has the largest minimal overlap if fitted in the gap g.

K - Kitchen Cable Chaos

Problem

Given n cables with lengths d_{1}, \ldots, d_{n}, find the set of cables that has the largest minimal overlap if fitted in the gap g.

Solution

- Calculate all pairs (i, j) such that there is a set of i cables with total length j.
- This can be done with a knapsack-like DP in $\mathcal{O}\left(n^{2} \cdot g\right)$.
- The largest minimal overlap for a pair (i, j) is given by $\frac{j+10-g}{i+1}$.
- Try all pairs to find the best solution.

M - Mountaineers

M - Mountaineers

Problem

Given are some pairs of points in a topographic map. For each pair find the least maximal height of a path connecting both ends.

M - Mountaineers

Problem

Given are some pairs of points in a topographic map. For each pair find the least maximal height of a path connecting both ends.

Intuition

- Imagine a rising water line throughout the mountain range.
- The answer for a pair is the lowest height at which it becomes possible to swim from one end to the other.

M - Mountaineers

Solution

- Store connected components in a union-find data structure. In each component, store a list of end points.
- Merge neighboring cells by increasing height.
- While merging:
- Always merge the smaller list into the larger list.
- If both ends of a pair are in the two lists, the current height is the answer for that pair.
- Total time complexity: $\mathcal{O}\left(k \cdot \log ^{2} k\right)$ where $k=\max (m \cdot n, q)$.

J - Jigsaw Puzzle

J - Jigsaw Puzzle

Problem

Assemble a jigsaw puzzle from square shaped pieces with jagged edges.

J - Jigsaw Puzzle

Problem

Assemble a jigsaw puzzle from square shaped pieces with jagged edges.

Solution 1

- Pick an arbitrary piece and place it at $(0,0)$.
- Run a breadth-first-search from this piece, fixing coordinates and orientation of the other pieces along the way.
- Check that this is a valid solution (no gaps/overlaps/...).
- Each step can be done in time $\mathcal{O}(n)$.

J - Jigsaw Puzzle

Problem

Assemble a jigsaw puzzle from square shaped pieces with jagged edges.

Solution 1

- Pick an arbitrary piece and place it at $(0,0)$.
- Run a breadth-first-search from this piece, fixing coordinates and orientation of the other pieces along the way.
- Check that this is a valid solution (no gaps/overlaps/...).
- Each step can be done in time $\mathcal{O}(n)$.

Solution 2

Find a corner piece and reconstruct the solution row by row. Be very careful when checking the connections.

G - GPS

G - GPS

Problem

Given a point \vec{x} on a sphere of radius r and a point \vec{y} outside the sphere, compute whether the line $\overline{\vec{x}} \vec{y}$ intersects the sphere and if not, output $|\vec{x} \vec{y}|$.

G - GPS

Problem

Given a point \vec{x} on a sphere of radius r and a point \vec{y} outside the sphere, compute whether the line $\overline{\vec{x} \vec{y}}$ intersects the sphere and if not, output $|\vec{x} \vec{y}|$.

Solution, part II

Assume \vec{x} and \vec{y} are given in cartesian coordinates (x, y, z).
To check whether the line $\overrightarrow{\vec{x} \vec{y}}$ intersects the sphere:

- Compute closest point \vec{p} on the line to $\overrightarrow{0}=(0,0,0)$ (vector projection, "Lot fällen"). You can use your 2D-Formula for this. It is also correct in higher dimensions.
- Check whether $|\vec{p}|$ is larger than r. If not, the line will intersect the sphere.
Alternatively, check on which side of the tangential plane \vec{y} lies (normal vector of the plane is \vec{x}) using dot product.

G - GPS

Solution, part I

Points are not given in cartesian coordinates ...

G - GPS

Solution, part I

Points are not given in cartesian coordinates ...

1. \vec{x} : Given in terms of geographic coordinates $\left(\ell_{0}, \ell_{a}\right)$. These are (similar to) polar coordinates - their conversion is known.

G - GPS

Solution, part I

Points are not given in cartesian coordinates ...

1. \vec{x} : Given in terms of geographic coordinates $\left(\ell_{0}, \ell_{a}\right)$. These are (similar to) polar coordinates - their conversion is known.
2. \vec{y} : Circle that intersects the XY-plane at (at least) two points with an angle ψ. One of the points is at longitude ϕ. The point is where one has covered $x \%$ of the circle from ϕ.

G - GPS

Solution, part I

Points are not given in cartesian coordinates ...

1. \vec{x} : Given in terms of geographic coordinates $\left(\ell_{0}, \ell_{a}\right)$. These are (similar to) polar coordinates - their conversion is known.
2. \vec{y} : Circle that intersects the XY-plane at (at least) two points with an angle ψ. One of the points is at longitude ϕ. The point is where one has covered $x \%$ of the circle from ϕ.
Compute the coordinate stepwise:

G - GPS

Solution, part I

Points are not given in cartesian coordinates ...

1. \vec{x} : Given in terms of geographic coordinates $\left(\ell_{0}, \ell_{a}\right)$. These are (similar to) polar coordinates - their conversion is known.
2. \vec{y} : Circle that intersects the XY-plane at (at least) two points with an angle ψ. One of the points is at longitude ϕ. The point is where one has covered $x \%$ of the circle from ϕ.
Compute the coordinate stepwise:

- Start with circle in equatorial plane of correct radius. Find point on $x \%$ of the circle.

G - GPS

Solution, part I

Points are not given in cartesian coordinates ...

1. \vec{x} : Given in terms of geographic coordinates $\left(\ell_{0}, \ell_{a}\right)$. These are (similar to) polar coordinates - their conversion is known.
2. \vec{y} : Circle that intersects the XY-plane at (at least) two points with an angle ψ. One of the points is at longitude ϕ. The point is where one has covered $x \%$ of the circle from ϕ.
Compute the coordinate stepwise:

- Start with circle in equatorial plane of correct radius. Find point on $x \%$ of the circle.
- Rotate in YZ-plane by ψ. Note that the orbit intersection is still at longitude 0

G - GPS

Solution, part I

Points are not given in cartesian coordinates ...

1. \vec{x} : Given in terms of geographic coordinates $\left(\ell_{0}, \ell_{a}\right)$. These are (similar to) polar coordinates - their conversion is known.
2. \vec{y} : Circle that intersects the XY-plane at (at least) two points with an angle ψ. One of the points is at longitude ϕ. The point is where one has covered $x \%$ of the circle from ϕ.
Compute the coordinate stepwise:

- Start with circle in equatorial plane of correct radius. Find point on $x \%$ of the circle.
- Rotate in YZ-plane by ψ. Note that the orbit intersection is still at longitude 0
- Rotate in XY-plane by ϕ.

